Journey into PI $$\pi$$ in base 27

To better understand the meaning of the representation of $$\pi$$ in base $$27$$, remember that $\pi=3.141592653...$ is no more than $\pi=3+\frac{1}{10}+\frac{4}{10^{2}}+\frac{1}{10^{3}}+\frac{5}{10^{4}}+\frac{9}{10^{5}}+\frac{2}{10^{6}}+\frac{6}{10^{7}}+\frac{5}{10^{8}}+\frac{3}{10^{9}}+...$

In base $$27$$, the numbers are represented by the symbols $\left\{ 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q\right\},$ where $$A$$ represents the digit $$10$$, $$B$$ the digit $$11$$, ..., $$Q$$ represents the digit $$26$$.

What does it mean to represent $$\pi$$ in base $$27$$? $\pi= 3.3M5Q3M2DCPQODJNGIG99AQ8N55DLG4I\\ @!!~\\ ~\\ OFL0A836DF2P8J9ACGAJ310Q7OC8H...$ This is nothing more than $\pi=3+\frac{3}{27^{1}}+\frac{M}{27^{2}}+\frac{5}{27^{3}}+\frac{Q}{27^{4}}+\frac{3}{27^{5}}+\frac{M}{27^{6}}+\frac{2}{27^{7}}+\\ ~\\ ~\\ +\frac{D}{27^{8}}+\frac{C}{27^{9}}+\frac{P}{27^{10}}+\frac{Q}{27^{11}}+\frac{O}{27^{12}}+\frac{D}{27^{13}}+...$In order to have only letters in this expansion and thus make it possible to search for names in $$\pi$$, the following correspondence was made $0\rightarrow"";1\rightarrow A;2\rightarrow B;3\rightarrow C;4\rightarrow D;5\rightarrow E;6\rightarrow F;\\ @!!~\\ ~\\ 7\rightarrow G;8\rightarrow H;9\rightarrow I;A\rightarrow J;B\rightarrow K;...;Q\rightarrow Z$

Accordingly, we represent $\pi =C.CVEZCVBMLYZXMSWPRPIIJZHWEEMUP\\ ~\\ DRXOUJHCFMOBYHSIJLPJSCA ZGXLH...$