## Journey into PI ### Is $$\pi$$ normal? Try it here

in the field "Number of digits" choose the order of magnitude of the numbers that the program will generate randomly. Then, a Table will be constructed where, for each of these numbers, the number of its occurrences in the first $$1\,000$$, $$10\,000$$, $$100\,000$$,  $$\ldots$$, $$1\,000\,000\,000$$ significant figures of $$\pi$$ will be represented.
 $$10^3$$ $$10^4$$ $$10^5$$ $$10^6$$ $$10^7$$ $$10^8$$ $$10^9$$ $$865$$ 2 14 113 1004 9913 99664 1000046 $$585$$ 1 8 107 978 9922 98498 989805 $$142$$ 1 16 103 1004 10014 100301 999829 $$815$$ 2 12 105 1009 9848 99542 998577 $$650$$ 0 5 104 1041 10207 100237 999627 $$384$$ 4 9 100 990 10040 100282 1001342 $$315$$ 1 10 92 950 9890 99703 999335 $$740$$ 0 2 87 950 9997 99725 1000436 $$464$$ 0 12 116 1026 9968 98555 988914 $$534$$ 4 10 112 967 10015 99990 999857 $$455$$ 1 13 107 1046 10018 99813 1000578 $$384$$ 4 9 100 990 10040 100282 1001342 $$658$$ 1 17 98 976 9875 99549 1000566 $$755$$ 1 7 101 1035 10011 99700 998776 $$306$$ 1 14 101 947 9734 99472 999432 $$443$$ 0 7 95 921 9217 91404 908194 $$574$$ 0 11 98 990 9901 100373 1001248