OBSERVAÇÃO IMPORTANTE SOBRE A CURVATURA
Note-se que, no caso tridimensional, a curvatura só toma valores não negativos, ao contrário do que acontecia no caso planar. Nos pontos onde a curvatura é diferente de zero, a curva "vira" para o lado para o qual aponta o vector normal do Triedro de Frenet nesses pontos. Também poderíamos ter considerado o mesmo na situação planar, mas a curvatura com sinal considerada tem a vantagem de também dar informação sobre o comportamento da normal ao longo do tempo.
Note-se que, no caso planar, foi possível incluir a informação relativa à normal na função curvatura porque o vector normal apenas pode tomar duas posições em relação à recta tangente - para a esquerda (k > 0) ou para a direita (k < 0). No caso tridimensional tal não é possível, pois o vector normal pode tomar uma infinidade de posições em relação à recta tangente.