Até ao momento em que estas linhas foram escritas, o recorde
para o cálculo de decimais de
foi obtido por Takahashi e Kanada
em 20 de Setembro de 1999.
Para tal, foi utilizado um supercomputador com 128 processadores em paralelo HITACHI SR8000 do Information Technology Center, Computer Centre Division da Universidade de Tóquio.
Para o cálculo foram utilizados dois algoritmos diferentes e que geraram 3 × 236 = 206 158 430 208 algarismos decimais.
O programa principal utilizou o algoritmo de Gauss-Legendre, necessitou de 865GB de memória e gastou 37h 21m e 4s para completar os cálculos.
O programa de verificação utilizou o algoritmo de 4aordem de Borwein, precisou de 817GB de memória e terminou os cálculos ao fim de 46h 7m e 10s.
Da comparação das sequências geradas, verificou-se que
estas coincidiam até os 206 158 430 163 algarismos
significativos, diferindo apenas nos últimos 45 dígitos. Foi então anunciado
o novo recorde com 206 158 430 000 algarismos
significativos para o valor de .
O valor de
apresentado neste módulo tem 1 073 741 000 algarismos
significativos.
Para o seu cálculo foi utilizado o programa PiFast versão
3.2 de Xavier Gourdon e o processo correu num computador Pentium II a
400Mhz, com 256MB de memória e 20GB de espaço dedicado em disco rígido. Foram
cálculados 230
=1 073 741 824
dígitos de
pelo algoritmo dos irmãos Chudnovsky e foram necessários 2d
13h 18m 5.64s.
Foram feitas ainda várias outras tentativas sem sucesso, até
se ter conseguido um valor para
com 2 147 483 000 algarismos.
Neste caso foi usada a versão 3.3 do programa PiFast. Com o auxílio de um computador Pentium III a 600Mhz com 256MB de memória e 30GB de espaço dedicado em disco, calcularam-se 231 =2 147 483 648 em 5d 1h 41m 38.09s.
Para este cálculo foi igualmente utilizado o algoritmo dos
irmãos Chudnovsky que se baseia na seguinte
fórmula, conhecida pela fórmula de Chudnovsky
![]() |
O mesmo programa permite ainda calcular
com recurso à expressão de Ramanujan
![]() |