Exemplo 2

\(\require{color}\newcommand{\arule}[1]{{\color{#1}\Rule{3em}{1ex}{0ex}\;}}\) \(\DeclareMathOperator{\sen}{sen}\)

Seja \[\begin{array}{rl} f:[0,4\pi] & \rightarrow\mathbb{R}^{3}\\ t & \rightarrow\frac{3}{8}\left(\sqrt{7}\cos(t),\,\sqrt{7}\sen(t),\,\frac{t}{3}\right) \end{array}\]

Então \[\arule{JungleGreen}=f'(t)=\frac{3}{8}\left(-\sqrt{7}\sen(t),\,\sqrt{7}\cos(t),\,\frac{1}{3}\right);\] \[\definecolor{castanho}{rgb}{0.6,0.4,0.2} \arule{castanho}=N(t)=\frac{f''(t)}{\left|f''(t)\right|}=\left(-\cos(t),\,-\sen(t),\,0\right);\] \[\arule{blue}=B(t)=T\times N=\frac{1}{8}\left(\sen(t),-\cos(t),\,3\sqrt{7}\right)\] e o traço da curva \(f\) é dado pela hélice:

Clique duas vezes para parar/recomeçar a animação